摘要:Bentonite is known as a kind of natural pozzolan that can improve the mechanical properties of cementitious materials and reduce the overall CO2 output of cement production. This study is designed to evaluate the feasibility of using bentonite as a substitute for cement in concrete and analyze the effect of bentonite on resisting chloride ion penetration. The concrete was replaced by equal-quality bentonite for 0%, 5%, 10%, 15% and 20% cement respectively, and the water-cement ratio, fine and coarse aggregate content remained constant. The results indicated that as the bentonite content increased, the compressive strength of the mixes increased first and then decreased. The sample containing 10% bentonite got a higher compressive strength than the other samples. The rapid chloride migration (RCM) tests showed that the samples containing bentonite had better resistance to chloride ion attack than samples without bentonite against chloride, especially the sample containing 10% bentonite. It can be concluded that the concrete with 10% bentonite can improve the resistance to chloride ion diffusion with high compressive strength.
其他摘要:Bentonite is known as a kind of natural pozzolan that can improve the mechanical properties of cementitious materials and reduce the overall CO2 output of cement production. This study is designed to evaluate the feasibility of using bentonite as a substitute for cement in concrete and analyze the effect of bentonite on resisting chloride ion penetration. The concrete was replaced by equal-quality bentonite for 0%, 5%, 10%, 15% and 20% cement respectively, and the water-cement ratio, fine and coarse aggregate content remained constant. The results indicated that as the bentonite content increased, the compressive strength of the mixes increased first and then decreased. The sample containing 10% bentonite got a higher compressive strength than the other samples. The rapid chloride migration (RCM) tests showed that the samples containing bentonite had better resistance to chloride ion attack than samples without bentonite against chloride, especially the sample containing 10% bentonite. It can be concluded that the concrete with 10% bentonite can improve the resistance to chloride ion diffusion with high compressive strength.