首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Removal of Nitrogen and Phosphorus from Wastewater by Modified Pyrite in a Sequencing Batch Reactor (SBR)
  • 本地全文:下载
  • 作者:Hou-Yun Yang ; Pei Xu ; Hua-Yuan Wang
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:136
  • 页码:1-4
  • DOI:10.1051/e3sconf/201913606027
  • 出版社:EDP Sciences
  • 摘要:The removal efficiency of nitrogen and phosphorus is challenging in the conventional biological nitrogen and phosphorus removal processes. In this study, the modified pyrite was used as the fillings of se-quencing batch reactor (SBR) in order to improve the efficiencies of nitrogen and phosphorus removal from wastewater. The results showed that SBR with the modified pyrite could significantly improve the removal efficiencies of nitrogen and phosphorus when compared with that in SBR without fillings (control SBR). The average influent ammonia nitrogen (NH4+-N) and total phosphorus (TP) were 6.96±0.17 mg L-1 and 6.94±0.01 mg L-1, respectively. The average NH4+-N and TP removals of modified pyrite constructed SBR were 49.65±19.49% with 3.54±1.31 mg L-1 of average effluent NH4+-N and 76.20±6.55% with 1.84±0.46 mg L-1 of average effluent TP, respectively. While the average NH4+-N and TP removal efficiencies of con-trol SBR were only 34.76±11.28% and 56.28±0.11%. The mechanisms of the SBR with enhanced simulta-neous nitrogen and phosphorus removals might be anaerobic and aerobic oxidations of modified pyrite, and phosphorus retained in the SBR of modified pyrite was mostly in the form of Fe-bound-P.
  • 其他摘要:The removal efficiency of nitrogen and phosphorus is challenging in the conventional biological nitrogen and phosphorus removal processes. In this study, the modified pyrite was used as the fillings of se-quencing batch reactor (SBR) in order to improve the efficiencies of nitrogen and phosphorus removal from wastewater. The results showed that SBR with the modified pyrite could significantly improve the removal efficiencies of nitrogen and phosphorus when compared with that in SBR without fillings (control SBR). The average influent ammonia nitrogen (NH4+-N) and total phosphorus (TP) were 6.96±0.17 mg L-1 and 6.94±0.01 mg L-1, respectively. The average NH4+-N and TP removals of modified pyrite constructed SBR were 49.65±19.49% with 3.54±1.31 mg L-1 of average effluent NH4+-N and 76.20±6.55% with 1.84±0.46 mg L-1 of average effluent TP, respectively. While the average NH4+-N and TP removal efficiencies of con-trol SBR were only 34.76±11.28% and 56.28±0.11%. The mechanisms of the SBR with enhanced simulta-neous nitrogen and phosphorus removals might be anaerobic and aerobic oxidations of modified pyrite, and phosphorus retained in the SBR of modified pyrite was mostly in the form of Fe-bound-P.
国家哲学社会科学文献中心版权所有