首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Study of the physicochemical properties of exosome dispersions obtained by ultrafiltration
  • 本地全文:下载
  • 作者:Elena Kastarnova ; Vladimir Orobets ; Valeria Shakhova
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:135
  • 页码:1-8
  • DOI:10.1051/e3sconf/201913501096
  • 出版社:EDP Sciences
  • 摘要:The article presents the results of studying the physicochemical properties of exosome preparations obtained by ultrafiltration, which indicate a high degree of the composition and properties dependence of the obtained product on the material of the filters used. Quantitative determination of proteins and nucleic acids in exosome samples using UPN-50 filters allows us to conclude that the content of the main impurity compounds in the preparation is significantly reduced compared to dispersions obtained using filters with pore sizes of 220 and 450 nm. Analysis of flow cytometry data made it possible to demonstrate that when using the UPN-50 filter, an increase in the contribution to the dispersion of all types of fractions of non-exosomal size was observed, the appearance of which can result from fraction destruction associated with pore size or filter material properties. drying of the dispersion was observed in the studied exosome samples. Fraction sizes ranged from 40 to 450 nm (an average of about 200 nm). Exosomes from the entire variety of membrane vesicles are fractions that have the most suitable characteristics that allow them to be used as a nanoscale drug delivery vehicle while ensuring the necessary quality control of the drug at the sample preparation stage.
  • 其他摘要:The article presents the results of studying the physicochemical properties of exosome preparations obtained by ultrafiltration, which indicate a high degree of the composition and properties dependence of the obtained product on the material of the filters used. Quantitative determination of proteins and nucleic acids in exosome samples using UPN-50 filters allows us to conclude that the content of the main impurity compounds in the preparation is significantly reduced compared to dispersions obtained using filters with pore sizes of 220 and 450 nm. Analysis of flow cytometry data made it possible to demonstrate that when using the UPN-50 filter, an increase in the contribution to the dispersion of all types of fractions of non-exosomal size was observed, the appearance of which can result from fraction destruction associated with pore size or filter material properties. drying of the dispersion was observed in the studied exosome samples. Fraction sizes ranged from 40 to 450 nm (an average of about 200 nm). Exosomes from the entire variety of membrane vesicles are fractions that have the most suitable characteristics that allow them to be used as a nanoscale drug delivery vehicle while ensuring the necessary quality control of the drug at the sample preparation stage.
国家哲学社会科学文献中心版权所有