首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:Passive fluxgate control of structural transformations in structural steels during thermal cycling
  • 本地全文:下载
  • 作者:Alexander Scherbakov ; Daria Monastyreva ; Vitaly Smirnov
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:135
  • 页码:1-15
  • DOI:10.1051/e3sconf/201913503022
  • 出版社:EDP Sciences
  • 摘要:Thermocycler processing (TCO) of metals and alloys belongs to one of the most effective ways to obtain the structure of structural steels with a given degree of dispersion. However, the development of thermocycler processing modes in each case is individual in nature and cannot be mechanically transferred from one material to another. Therefore, it is necessary to consider the structural changes in metals during TCO using examples of steels belonging to different groups so that from the whole variety of processes, dissolution and precipitation of phases, stresses and strains, only those that allow you to obtain a given optimal fine-grained structure are selected. Based on the obtained data, we plotted the dependence of the magnetic field strength Hp on the number of cycles during thermal cycling. A comparative analysis of the obtained results is made and conclusions are drawn on the relationship between the magnetic parameter Hp and structural changes in steels during TCO.
  • 其他摘要:Thermocycler processing (TCO) of metals and alloys belongs to one of the most effective ways to obtain the structure of structural steels with a given degree of dispersion. However, the development of thermocycler processing modes in each case is individual in nature and cannot be mechanically transferred from one material to another. Therefore, it is necessary to consider the structural changes in metals during TCO using examples of steels belonging to different groups so that from the whole variety of processes, dissolution and precipitation of phases, stresses and strains, only those that allow you to obtain a given optimal fine-grained structure are selected. Based on the obtained data, we plotted the dependence of the magnetic field strength Hp on the number of cycles during thermal cycling. A comparative analysis of the obtained results is made and conclusions are drawn on the relationship between the magnetic parameter Hp and structural changes in steels during TCO.
国家哲学社会科学文献中心版权所有