首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Pareto Joint Inversion of 2D magnetometric and gravity data- synthetic study
  • 本地全文:下载
  • 作者:Tomasz Danek ; Andrzej Leśniak ; Katarzyna Miernik
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:133
  • 页码:1-10
  • DOI:10.1051/e3sconf/201913301009
  • 出版社:EDP Sciences
  • 摘要:Pareto joint inversion for two or more data sets is an attractive and promising tool which eliminates target functions weighing and scaling, providing a set of acceptable solutions composing a Pareto front. In former author’s study MARIA (Modular Approach Robust Inversion Algorithm) was created as a flexible software based on global optimization engine (PSO) to obtain model parameters in process of Pareto joint inversion of two geophysical data sets. 2D magnetotelluric and gravity data were used for preliminary tests, but the software is ready to handle data from more than two geophysical methods. In this contribution, the authors’ magnetometric forward solver was implemented and integrated with MARIA. The gravity and magnetometry forward solver was verified on synthetic models. The tests were performed for different models of a dyke and showed, that even when the starting model is a homogeneous area without anomaly, it is possible to recover the shape of a small detail of the real model. Results showed that the group analysis of models on the Pareto front gives more information than the single best model. The final stage of interpretation is the raster map of Pareto front solutions analysis.
  • 其他摘要:Pareto joint inversion for two or more data sets is an attractive and promising tool which eliminates target functions weighing and scaling, providing a set of acceptable solutions composing a Pareto front. In former author’s study MARIA (Modular Approach Robust Inversion Algorithm) was created as a flexible software based on global optimization engine (PSO) to obtain model parameters in process of Pareto joint inversion of two geophysical data sets. 2D magnetotelluric and gravity data were used for preliminary tests, but the software is ready to handle data from more than two geophysical methods. In this contribution, the authors’ magnetometric forward solver was implemented and integrated with MARIA. The gravity and magnetometry forward solver was verified on synthetic models. The tests were performed for different models of a dyke and showed, that even when the starting model is a homogeneous area without anomaly, it is possible to recover the shape of a small detail of the real model. Results showed that the group analysis of models on the Pareto front gives more information than the single best model. The final stage of interpretation is the raster map of Pareto front solutions analysis.
  • 其他关键词:Pareto joint inversion ; PSO ; global optimization ; scientific computing ; magnetometry ; gravimetry
国家哲学社会科学文献中心版权所有