首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Dedicated control and measurement system for bioreactors to study the composting process
  • 本地全文:下载
  • 作者:Krzysztof Nalepa ; Maciej Neugebauer ; Piotr Sołowiej
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:132
  • 页码:1-5
  • DOI:10.1051/e3sconf/201913201018
  • 出版社:EDP Sciences
  • 摘要:During the composting process, waste biomass with high moisture content undergoes various transformation in the presence of oxygen. The composting process is analyzed in dedicated bioreactors which are air-tight facilities with external air supply. Subject to the type of composted plant material, biomass should be periodically turned to promote even aeration. The following information is required to build a model of the composting process: oxygen (air) uptake, moisture content of exhaust gas, production of carbon dioxide, ammonia and other gases in the composting process, and temperature distribution inside the bioreactor. A temperature monitoring system for a bioreactor is difficult to build due to challenging operating conditions including the airtight structure of a bioreactor, high moisture content, the operation of temperature sensors in a highly aggressive environment, problems with uninterrupted power supply for the monitoring system in a bioreactor. This article presents a patented temperature monitoring system for a bioreactor. The system’s design and structure are discussed, and recommendations for functional improvements are made.
  • 其他摘要:During the composting process, waste biomass with high moisture content undergoes various transformation in the presence of oxygen. The composting process is analyzed in dedicated bioreactors which are air-tight facilities with external air supply. Subject to the type of composted plant material, biomass should be periodically turned to promote even aeration. The following information is required to build a model of the composting process: oxygen (air) uptake, moisture content of exhaust gas, production of carbon dioxide, ammonia and other gases in the composting process, and temperature distribution inside the bioreactor. A temperature monitoring system for a bioreactor is difficult to build due to challenging operating conditions including the airtight structure of a bioreactor, high moisture content, the operation of temperature sensors in a highly aggressive environment, problems with uninterrupted power supply for the monitoring system in a bioreactor. This article presents a patented temperature monitoring system for a bioreactor. The system’s design and structure are discussed, and recommendations for functional improvements are made.
国家哲学社会科学文献中心版权所有