摘要:The reachability problem is to determine if there exists a path from one vertex to another in a graph. Grid graphs are the class of graphs where vertices are present on the lattice points of a two-dimensional grid, and an edge can occur between a vertex and its immediate horizontal or vertical neighbor only. Asano et al. presented the first simultaneous time space bound for reachability in grid graphs by presenting an algorithm that solves the problem in polynomial time and O(n^(1/2 + epsilon)) space. In 2018, the space bound was improved to O~(n^(1/3)) by Ashida and Nakagawa. In this paper, we show that reachability in an n vertex grid graph can be decided by an algorithm using O(n^(1/4 + epsilon)) space and polynomial time simultaneously.
关键词:graph reachability; grid graph; graph algorithm; sublinear space algorithm