首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Popular Roommates in Simply Exponential Time
  • 本地全文:下载
  • 作者:Telikepalli Kavitha
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:150
  • 页码:1-15
  • DOI:10.4230/LIPIcs.FSTTCS.2019.20
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the popular matching problem in a graph G = (V,E) on n vertices with strict preferences. A matching M is popular if there is no matching N in G such that vertices that prefer N to M outnumber those that prefer M to N. It is known that it is NP-hard to decide if G has a popular matching or not. There is no faster algorithm known for this problem than the brute force algorithm that could take n! time. Here we show a simply exponential time algorithm for this problem, i.e., one that runs in O^*(k^n) time, where k is a constant. We use the recent breakthrough result on the maximum number of stable matchings possible in such instances to analyze our algorithm for the popular matching problem. We identify a natural (also, hard) subclass of popular matchings called truly popular matchings and show an O^*(2^n) time algorithm for the truly popular matching problem.
  • 关键词:Roommates instance; Popular matching; Stable matching; Dual certificate
国家哲学社会科学文献中心版权所有