首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On the AC^0[oplus] Complexity of Andreev's Problem
  • 本地全文:下载
  • 作者:Aditya Potukuchi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:150
  • 页码:1-14
  • DOI:10.4230/LIPIcs.FSTTCS.2019.25
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Andreev's Problem is the following: Given an integer d and a subset of S subset F_q x F_q, is there a polynomial y = p(x) of degree at most d such that for every a in F_q, (a,p(a)) in S? We show an AC^0[oplus] lower bound for this problem. This problem appears to be similar to the list recovery problem for degree-d Reed-Solomon codes over F_q which states the following: Given subsets A_1,...,A_q of F_q, output all (if any) the Reed-Solomon codewords contained in A_1 x *s x A_q. In particular, we study this problem when the lists A_1, ..., A_q are randomly chosen, and are of a certain size. This may be of independent interest.
  • 关键词:List Recovery; Sharp Threshold; Fourier Analysis
国家哲学社会科学文献中心版权所有