摘要:Traditional concurrent games on graphs involve a fixed number of players, who take decisions simultaneously, determining the next state of the game. In this paper, we introduce a parameterized variant of concurrent games on graphs, where the parameter is precisely the number of players. Parameterized concurrent games are described by finite graphs, in which the transitions bear regular languages to describe the possible move combinations that lead from one vertex to another. We consider the problem of determining whether the first player, say Eve, has a strategy to ensure a reachability objective against any strategy profile of her opponents as a coalition. In particular Eve's strategy should be independent of the number of opponents she actually has. Technically, this paper focuses on an a priori simpler setting where the languages labeling transitions only constrain the number of opponents (but not their precise action choices). These constraints are described as semilinear sets, finite unions of intervals, or intervals. We establish the precise complexities of the parameterized reachability game problem, ranging from PTIME-complete to PSPACE-complete, in a variety of situations depending on the contraints (semilinear predicates, unions of intervals, or intervals) and on the presence or not of non-determinism.