首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Cyclability in Graph Classes
  • 本地全文:下载
  • 作者:Christophe Crespelle ; Carl Feghali ; Petr A. Golovach
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:149
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ISAAC.2019.16
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A subset T subseteq V(G) of vertices of a graph G is said to be cyclable if G has a cycle C containing every vertex of T, and for a positive integer k, a graph G is k-cyclable if every subset of vertices of G of size at most k is cyclable. The Terminal Cyclability problem asks, given a graph G and a set T of vertices, whether T is cyclable, and the k-Cyclability problem asks, given a graph G and a positive integer k, whether G is k-cyclable. These problems are generalizations of the classical Hamiltonian Cycle problem. We initiate the study of these problems for graph classes that admit polynomial algorithms for Hamiltonian Cycle. We show that Terminal Cyclability can be solved in linear time for interval graphs, bipartite permutation graphs and cographs. Moreover, we construct certifying algorithms that either produce a solution, that is, a cycle, or output a graph separator that certifies a no-answer. We use these results to show that k-Cyclability can be solved in polynomial time when restricted to the aforementioned graph classes.
  • 关键词:Cyclability; interval graphs; bipartite permutation graphs; cographs
国家哲学社会科学文献中心版权所有