首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On Optimal Balance in B-Trees: What Does It Cost to Stay in Perfect Shape?
  • 本地全文:下载
  • 作者:Rolf Fagerberg ; David Hammer ; Ulrich Meyer
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:149
  • 页码:1-16
  • DOI:10.4230/LIPIcs.ISAAC.2019.35
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Any B-tree has height at least ceil[log_B(n)]. Static B-trees achieving this height are easy to build. In the dynamic case, however, standard B-tree rebalancing algorithms only maintain a height within a constant factor of this optimum. We investigate exactly how close to ceil[log_B(n)] the height of dynamic B-trees can be maintained as a function of the rebalancing cost. In this paper, we prove a lower bound on the cost of maintaining optimal height ceil[log_B(n)], which shows that this cost must increase from Omega(1/B) to Omega(n/B) rebalancing per update as n grows from one power of B to the next. We also provide an almost matching upper bound, demonstrating this lower bound to be essentially tight. We then give a variant upper bound which can maintain near-optimal height at low cost. As two special cases, we can maintain optimal height for all but a vanishing fraction of values of n using Theta(log_B(n)) amortized rebalancing cost per update and we can maintain a height of optimal plus one using O(1/B) amortized rebalancing cost per update. More generally, for any rebalancing budget, we can maintain (as n grows from one power of B to the next) optimal height essentially up to the point where the lower bound requires the budget to be exceeded, after which optimal height plus one is maintained. Finally, we prove that this balancing scheme gives B-trees with very good storage utilization.
  • 关键词:B-trees; Data structures; Lower bounds; Complexity
国家哲学社会科学文献中心版权所有