首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:On Explicit Branching Programs for the Rectangular Determinant and Permanent Polynomials
  • 本地全文:下载
  • 作者:V. Arvind ; Abhranil Chatterjee ; Rajit Datta
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:149
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ISAAC.2019.38
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the arithmetic circuit complexity of some well-known family of polynomials through the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic branching programs (ABP) for determinant and permanent polynomials of the rectangular symbolic matrix in both commutative and noncommutative settings. The main results are: - We show an explicit O^*(binom{n}{downarrow k/2})-size ABP construction for noncommutative permanent polynomial of k x n symbolic matrix. We obtain this via an explicit ABP construction of size O^*(binom{n}{downarrow k/2}) for S_{n,k}^*, noncommutative symmetrized version of the elementary symmetric polynomial S_{n,k}. - We obtain an explicit O^*(2^k)-size ABP construction for the commutative rectangular determinant polynomial of the k x n symbolic matrix. - In contrast, we show that evaluating the rectangular noncommutative determinant over rational matrices is #W[1]-hard.
  • 关键词:Determinant; Permanent; Parameterized Complexity; Branching Programs
国家哲学社会科学文献中心版权所有