首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Parameterized Complexity Classification of Deletion to List Matrix-Partition for Low-Order Matrices
  • 本地全文:下载
  • 作者:Akanksha Agrawal ; Sudeshna Kolay ; Jayakrishnan Madathil
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:149
  • 页码:1-14
  • DOI:10.4230/LIPIcs.ISAAC.2019.41
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a symmetric l x l matrix M=(m_{i,j}) with entries in {0,1,*}, a graph G and a function L : V(G) - > 2^{[l]} (where [l] = {1,2,...,l}), a list M-partition of G with respect to L is a partition of V(G) into l parts, say, V_1, V_2, ..., V_l such that for each i,j in {1,2,...,l}, (i) if m_{i,j}=0 then for any u in V_i and v in V_j, uv not in E(G), (ii) if m_{i,j}=1 then for any (distinct) u in V_i and v in V_j, uv in E(G), (iii) for each v in V(G), if v in V_i then i in L(v). We consider the Deletion to List M-Partition problem that takes as input a graph G, a list function L:V(G) - > 2^[l] and a positive integer k. The aim is to determine whether there is a k-sized set S subseteq V(G) such that G-S has a list M-partition. Many important problems like Vertex Cover, Odd Cycle Transversal, Split Vertex Deletion, Multiway Cut and Deletion to List Homomorphism are special cases of the Deletion to List M-Partition problem. In this paper, we provide a classification of the parameterized complexity of Deletion to List M-Partition, parameterized by k, (a) when M is of order at most 3, and (b) when M is of order 4 with all diagonal entries belonging to {0,1}.
  • 关键词:list matrix partitions; parameterized classification; Almost 2-SAT; important separators; iterative compression
国家哲学社会科学文献中心版权所有