摘要:We analyze the stabilization time of minority processes in graphs. A minority process is a dynamically changing coloring, where each node repeatedly changes its color to the color which is least frequent in its neighborhood. First, we present a simple Omega(n^2) stabilization time lower bound in the sequential adversarial model. Our main contribution is a graph construction which proves a Omega(n^(2-epsilon)) stabilization time lower bound for any epsilon>0. This lower bound holds even if the order of nodes is chosen benevolently, not only in the sequential model, but also in any reasonable concurrent model of the process.