首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Hardness of FO Model-Checking on Random Graphs
  • 本地全文:下载
  • 作者:Jan Dreier ; Peter Rossmanith
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:148
  • 页码:1-15
  • DOI:10.4230/LIPIcs.IPEC.2019.11
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:It is known that FO model-checking is fixed-parameter tractable on Erdös - Rényi graphs G(n,p(n)) if the edge-probability p(n) is sufficiently small [Grohe, 2001] (p(n)=O(n^epsilon/n) for every epsilon>0). A natural question to ask is whether this result can be extended to bigger probabilities. We show that for Erdös - Rényi graphs with vertex colors the above stated upper bound by Grohe is the best possible. More specifically, we show that there is no FO model-checking algorithm with average FPT run time on vertex-colored Erdös - Rényi graphs G(n,n^delta/n) (0 < delta < 1) unless AW[*]subseteq FPT/poly. This might be the first result where parameterized average-case intractability of a natural problem with a natural probability distribution is linked to worst-case complexity assumptions. We further provide hardness results for FO model-checking on other random graph models, including G(n,1/2) and Chung-Lu graphs, where our intractability results tightly match known tractability results [E. D. Demaine et al., 2014]. We also provide lower bounds on the size of shallow clique minors in certain Erdös - Rényi and Chung - Lu graphs.
  • 关键词:random graphs; FO model-checking
国家哲学社会科学文献中心版权所有