摘要:We study a categorical generalisation of tree automata, as algebras for a fixed endofunctor endowed with initial and final states. Under mild assumptions about the base category, we present a general minimisation algorithm for these automata. We then build upon and extend an existing generalisation of the Nerode equivalence to a categorical setting and relate it to the existence of minimal automata. Finally, we show that generalised types of side-effects, such as non-determinism, can be captured by this categorical framework, leading to a general determinisation procedure.