摘要:We introduce a new notion of "guarded Elgot monad", that is a monad equipped with a form of iteration. It requires every guarded morphism to have a specified fixpoint, and classical equational laws of iteration to be satisfied. This notion includes Elgot monads, but also further examples of partial non-unique iteration, emerging in the semantics of processes under infinite trace equivalence. We recall the construction of the "coinductive resumption monad" from a monad and endofunctor, that is used for modelling programs up to bisimilarity. We characterize this construction via a universal property: if the given monad is guarded Elgot, then the coinductive resumption monad is the guarded Elgot monad that freely extends it by the given endofunctor.