首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Predicting performance of first year engineering students and the importance of assessment tools therein
  • 其他标题:Predicting performance of first year engineering students and the importance of assessment tools therein
  • 本地全文:下载
  • 作者:Stephen Lee ; Martin C. Harrison ; Godfrey Pell
  • 期刊名称:Higher Education Pedagogies
  • 电子版ISSN:2375-2696
  • 出版年度:2008
  • 卷号:3
  • 期号:1
  • 页码:44-51
  • DOI:10.11120/ened.2008.03010044
  • 出版社:Taylor and Francis Ltd
  • 摘要:In recent years, the increase in the number of people entering university has contributed to a greater variability in the background of those beginning programmes. Consequently, it has become even more important to understand a student’s prior knowledge of a given subject. Two main reasons for this are to produce a suitable first year curriculum and to ascertain whether a student would benefit from additional support. Therefore, in order that any necessary steps can be taken to improve a student’s performance, the ultimate goal would be the ability to predict future performance.A continuing change in students’ prior mathematics (and mechanics) knowledge is being seen in engineering, a subject that requires a significant amount of mathematics knowledge. This paper describes statistical regression models used for predicting students’ first year performance. Results from these models highlight that a mathematics diagnostic test is not only useful for gaining information on a student’s prior knowledge but is also one of the best predictors of future performance. In the models, it was also found that students’ marks could be improved by seeking help in the university’s mathematics learning support centre. Tools and methodologies (e.g. surveys and diagnostic tests) suitable for obtaining data used in the regression models are also discussed.
国家哲学社会科学文献中心版权所有