首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Barotropic Instability of a Cyclone Core at Kilometer‐Scale Resolution
  • 本地全文:下载
  • 作者:David Leutwyler ; Christoph Schär
  • 期刊名称:Journal of Advances in Modeling Earth Systems
  • 电子版ISSN:1942-2466
  • 出版年度:2019
  • 卷号:11
  • 期号:11
  • 页码:3390-3402
  • DOI:10.1029/2019MS001847
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Secondary disturbances spawning frontal waves along the fronts of mature midlatitude low‐pressure systems were identified decades ago from satellite images and during field campaigns. Today's flagship supercomputers allow performing simulations at kilometer‐scale resolution on computational domains covering the entire lifecycle of synoptic‐scale systems and thus enable explicit representation of small‐scale disturbances embedded in large‐scale circulations. Here we demonstrate these capabilities in two different types of kilometer‐scale simulations. The first is a 10‐day‐long near‐global simulation of an idealized moist baroclinic wave, performed at 1 km grid spacing and employing 16,001 × 36,006 × 60 grid points. The second is a real‐case simulation of an extratropical low‐pressure system, driven by the European Centre for Medium‐Range Weather Forecasts's operational analysis. At kilometer‐scale resolution, both simulations display clear evidence of embedded mesoscale vortices spawning along frontal systems of mature extratropical cyclones. The vortices appearing in the real‐case simulation can also be identified in satellite imagery of the system. The simulated developments are due to a barotropic instability mechanism and driven by strong low‐level horizontal wind shear. While the simulation of the frontal systems is amenable at model resolutions around 10–50 km, the instability mechanism itself relies on the representation of a narrow shear zone, requiring about 5 times finer resolution. Results suggest that the flow regimes suppressing or fostering barotropic vortices can coexist in the same synoptic system. Far away from the cyclone core, the instability is suppressed by deformation associated with the large‐scale flow, while close to the mature cyclone core, the narrow frontal structure becomes unstable.
  • 关键词:barotropic instability;idealized baroclinic wave;mesovortex;convection‐resolving;graphics processing unit;GPU;extratropical cyclone
国家哲学社会科学文献中心版权所有