首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Signal-to-noise Ratio Estimation for SEM Single Image using Cubic Spline Interpolation with Linear Least Square Regression
  • 本地全文:下载
  • 作者:K. S. Sim ; F. F. Ting ; J. W. Leong
  • 期刊名称:Engineering Letters
  • 印刷版ISSN:1816-093X
  • 电子版ISSN:1816-0948
  • 出版年度:2019
  • 卷号:27
  • 期号:1
  • 页码:151-165
  • 出版社:Newswood Ltd
  • 摘要:A novel technique based on cubic spline interpolation with linear least square regression (CSILLSR) is developed to calculate the signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The SNR from CSILLSR method is compared with methods of nearest, linear interpolation, a combination of linear interpolation and nearest, non-linear least square regression, autocorrelation Levinson-Durbin recursion, and adaptive slope nearest neighbourhood. Samples of SEM images with various accelerating voltages, beam diameters, surface tilts and contrast were applied to evaluate the performance of CSILLSR method in terms of SNR values of the SEM images. The new method is able to generate more accuracy results than the other six methods. In addition, the CSILLSR Wiener filter appears to be the best filter to reduce and remove white Gaussian noise from SEM images as compared to the average filter and median filter.
  • 关键词:Gaussian noise; Cubic Spline Interpolation; Linear Least Square Regression; SNR estimation
国家哲学社会科学文献中心版权所有