首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Berry-Esséen bounds for parameter estimation of general Gaussian processes
  • 本地全文:下载
  • 作者:Soukaina Douissi ; Khalifa Es-Sebaiy ; Frederi G. Viens
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2019
  • 卷号:XVI
  • 期号:1
  • 页码:633-664
  • DOI:10.30757/ALEA.v16-23
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:We study rates of convergence in central limit theorems for the partialsum of squares of general Gaussian sequences, using tools from analysis on Wienerspace. No assumption of stationarity, asymptotically or otherwise, is made. Themain theoretical tool is the so-called Optimal Fourth Moment Theorem (Nourdinand Peccati, 2015), which provides a sharp quantitative estimate of the total variationdistance on Wiener chaos to the normal law. The only assumptions madeon the sequence are the existence of an asymptotic variance, that a least-squarestypeestimator for this variance parameter has a bias and a variance which can becontrolled, and that the sequence’s auto-correlation function, which may exhibitlong memory, has a no-worse memory than that of fractional Brownian motionwith Hurst parameter H < 3=4. Our main result is explicit, exhibiting the tradeoffbetween bias, variance, and memory. We apply our result to study drift parameterestimation problems for subfractional Ornstein-Uhlenbeck and bifractionalOrnstein-Uhlenbeck processes with fixed-time-step observations. These are processeswhich fail to be stationary or self-similar, but for which detailed calculationsresult in explicit formulas for the estimators’ asymptotic normality.
  • 关键词:Central limit theorem; Berry-Esseen; Nourdin-Peccati analysis; parameter;estimation; fractional Brownian motion; long memory
国家哲学社会科学文献中心版权所有