首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Vanishing-Error Approximate Degree and QMA Complexity
  • 本地全文:下载
  • 作者:Alexander A. Sherstov ; Justin Thaler
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-16
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    The -approximate degree of a function f : X 0 1 is the least degree of a multivariate real polynomial p such that p ( x ) − f ( x ) for all x X . We determine the -approximate degree of the element distinctness function, the surjectivity function, and the permutation testing problem, showing they are ( n 2 3 log 1 3 (1 )) , ( n 3 4 log 1 4 (1 )) , and ( n 1 3 log 2 3 (1 )) , respectively. Previously, these bounds were known only for constant

    We also derive a connection between vanishing-error approximate degree and quantum Merlin--Arthur (QMA) query complexity. We use this connection to show that the QMA complexity of permutation testing is ( n 1 4 ) . This improves on the previous best lower bound of ( n 1 6 ) due to Aaronson (Quantum Information & Computation, 2012), and comes somewhat close to matching a known upper bound of O ( n 1 3 ) .

  • 关键词:approximate degree ; dual polynomials ; polynomial method ; QMA
国家哲学社会科学文献中心版权所有