首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Parity helps to compute Majority
  • 本地全文:下载
  • 作者:Igor Carboni Oliveira ; Rahul Santhanam ; Srikanth Srinivasan
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-19
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We study the complexity of computing symmetric and threshold functions by constant-depth circuits with Parity gates, also known as AC 0 [ ] circuits. Razborov (1987) and Smolensky (1987, 1993) showed that Majority requires depth- d AC 0 [ ] circuits of size 2 ( n 1 2( d − 1) ) . By using a divide-and-conquer approach, it is easy to show that Majority can be computed with depth- d AC 0 [ ] circuits of size 2 O ( n 1 ( d − 1) ) . This gap between upper and lower bounds has stood for nearly three decades.Somewhat surprisingly, we show that neither the upper bound nor the lower bound above is tight for large d . We show for d 5 that any symmetric function can be computed with depth- d AC 0 [ ] circuits of size exp ( O ( n 3 2 1 ( d − 4) ) ) . Our upper bound extends to threshold functions (with a constant additive loss in the denominator of the double exponent). We improve the Razborov-Smolensky lower bound to show that for d 3 Majority requires depth- d AC 0 [ ] circuits of size 2 ( n 1 (2 d − 4) ) . For depths d 4 , we are able to refine our techniques to get almost-optimal bounds: the depth- 3 AC 0 [ ] circuit size of Majority is 2 ( n 1 2 ) , while its depth- 4 AC 0 [ ] circuit size is 2 ( n 1 4 ) .

  • 关键词:circuit complexity ; lower bounds ; majority ; parity gate ; polynomial approximation
国家哲学社会科学文献中心版权所有