首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On the complexity of computing a random Boolean function over the reals
  • 本地全文:下载
  • 作者:Pavel Hrubes
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-11
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We say that a first-order formula A ( x 1 x n ) over R defines a Boolean function f : 0 1 n 0 1 , if for every x 1 x n 0 1 , A ( x 1 x n ) is true iff f ( x 1 x n ) = 1 . We show that:

    (i) every f can be defined by a formula of size O ( n ) , (ii) if A is required to have at most k 1 quantifier alternations, there exists an f which requires a formula of size 2 ( n k ) . The latter result implies several previously known as well as some new lower bounds in computational complexity. We note that (i) holds over any field of characteristic zero, and (ii) holds for any real closed or algebraically closed field.

  • 关键词:Quantifier Elimination ; real computation
国家哲学社会科学文献中心版权所有