首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Efficiently factoring polynomials modulo p 4
  • 本地全文:下载
  • 作者:Ashish Dwivedi ; Rajat Mittal ; Nitin Saxena
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-22
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    Polynomial factoring has famous practical algorithms over fields-- finite, rational \& p -adic. However, modulo prime powers it gets hard as there is non-unique factorization and a combinatorial blowup ensues. For example, x 2 + p mod p 2 is irreducible, but x 2 + p x mod p 2 has exponentially many factors! We present the first randomized poly( deg f log p ) time algorithm to factor a given univariate integral f ( x ) modulo p k , for a prime p and k 4 . Thus, we solve the open question of factoring modulo p 3 posed in (Sircana, ISSAC'17).

    Our method reduces the general problem of factoring f ( x ) mod p k to that of {\em root finding} in a related polynomial E ( y ) mod p k ( x ) for some irreducible mod p . We could efficiently solve the latter for k 4 , by incrementally transforming E ( y ) . Moreover, we discover an efficient and strong generalization of Hensel lifting to lift factors of f ( x ) mod p to those mod p 4 (if possible). This was previously unknown, as the case of repeated factors of f ( x ) mod p forbids classical Hensel lifting.

  • 关键词:efficient ; factor ; Hensel lift ; local ring ; p-adic ; prime-power ; Randomized ; roots
国家哲学社会科学文献中心版权所有