首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:A Hybrid Swarm Optimization Approach for Document Binarization
  • 本地全文:下载
  • 作者:Mohamed ABD ELFATTAH ; Aboul Ella HASSANIEN ; Sherihan ABUELENIN
  • 期刊名称:Studies in Informatics and Control Journal
  • 印刷版ISSN:1220-1766
  • 出版年度:2019
  • 卷号:28
  • 期号:1
  • 页码:65-76
  • DOI:10.24846/v28i1y201907
  • 出版社:National Institute for R&D in Informatics
  • 摘要:The binarization process is the preliminary and most significant phase of the document image analysis applications. A hybrid approach based on the merger of Salp swarm algorithm and the chaos theory is introduced. The proposed hybrid approach has been used to evaluate their ability and precision in the clustering process. It is revealed how Salp can operate to find automatically the centroid of a defined number of clusters using K-means objective function. Several different chaotic maps are integrated to adjust the behavior of the Salps by calibrating their random numbers. The efficiency of the proposed chaotic Salp swarm algorithm is empirically verified on the Document Image Binarization Contest H-DIBCO 2016 dataset. A comparison made between the proposed approach and some of the state-of-the-art methods in terms of F-Measure, Peak Signal to Noise Ratio and pseudo-F-Measure. In addition, Geometric-mean pixel accuracy, Distance Reciprocal Distortion Metric, Negative Rate Metric and Misclassification Penalty Metric are shown and discussed.
  • 关键词:K-means; Salp swarm Algorithm; Optimization; Clustering; H-DIBCO 2016.
国家哲学社会科学文献中心版权所有