首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Multi-Layer Classifier for Minimizing False Intrusion
  • 本地全文:下载
  • 作者:Shaker El-Sappagh ; Ahmed saad Mohammed ; Tarek Ahmed AlSheshtawy
  • 期刊名称:International Journal of Network Security & Its Applications
  • 印刷版ISSN:0975-2307
  • 电子版ISSN:0974-9330
  • 出版年度:2019
  • 卷号:11
  • 期号:3
  • 页码:43-51
  • DOI:10.5121/ijnsa.2019.11304
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Intrusion detection is one of the standard stages to protect computers in network security framework from several attacks. False alarms problem is critical in intrusion detection, which motivates many researchers to discover methods to minify false alarms. This paper proposes a procedure for classifying the type of intrusion according to multi-operations and multi-layer classifier for handling false alarms in intrusion detection. The proposed system is tested using on KDDcup99 benchmark. The performance showed that results obtained from three consequent classifiers are better than a single classifier. The accuracy reached 98% based on 25 features instead of using all features of KDDCup99 dataset.
  • 关键词:Intrusion detection; multi-layer classifier; KDD CUP 99; False Alarms
国家哲学社会科学文献中心版权所有