首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Comparative Mention-Pair Models for Coreference Resolution in DARI Language for Information Extraction
  • 本地全文:下载
  • 作者:Ghezal Ahmad Jan Zia ; Ahmad Zia Sharifi ; Fazl Ahmad Amini
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2019
  • 卷号:9
  • 期号:7
  • 页码:101-114
  • DOI:10.5121/csit.2019.90708
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Coreference resolution plays an important role in Information Extraction.This paper covers the investigation of two strategies based on a mention-pair resolver using Decision Tree classifier on structured and unstructured dataset, targeting coreference resolution in Dari language. Strategies are (1) training separate models which is specialized in particular categories (e.g., lexical, syntactic and semantic) and types of mentions (e.g. pronouns, proper nouns) and (2) using a structured dataset on a machine learning library that is designed to classify numerical values. Moreover, these modifications and comparative models describe a contribution of comprehensive factors involved in the resolution of texts. Specifically, we developed the first Dari corpus (’DariCoref’) based on OntoNotes and WikiCoref scheme. Both strategies are produced f-score of state-of-the-art.
国家哲学社会科学文献中心版权所有