首页    期刊浏览 2025年06月06日 星期五
登录注册

文章基本信息

  • 标题:Spam Review Classification Using Ensemble of Global and Local Feature Selectors
  • 本地全文:下载
  • 作者:Gunjan Ansari ; Tanvir Ahmad ; Mohammad Najmud Doja
  • 期刊名称:Cybernetics and Information Technologies
  • 印刷版ISSN:1311-9702
  • 电子版ISSN:1314-4081
  • 出版年度:2018
  • 卷号:18
  • 期号:4
  • 页码:29-42
  • DOI:10.2478/cait-2018-0046
  • 出版社:Bulgarian Academy of Science
  • 摘要:In our work, we propose an ensemble of local and global filter-based feature selection method to reduce the high dimensionality of feature space and increase accuracy of spam review classification. These selected features are then used for training various classifiers for spam detection. Experimental results with four classifiers on two available datasets of hotel reviews show that the proposed feature selector improves the performance of spam classification in terms of wellknown performance metrics such as AUC score.
  • 关键词:Feature selection; improved global feature selector; odds ratio; Spam; classification.
国家哲学社会科学文献中心版权所有