首页    期刊浏览 2024年09月16日 星期一
登录注册

文章基本信息

  • 标题:A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery
  • 本地全文:下载
  • 作者:Shaogeng Tang ; Peter S. Kim
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:49
  • 页码:24500-24506
  • DOI:10.1073/pnas.1916916116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Immune checkpoint blockade of programmed death-1 (PD-1) by monoclonal antibody drugs has delivered breakthroughs in the treatment of cancer. Nonetheless, small-molecule PD-1 inhibitors could lead to increases in treatment efficacy, safety, and global access. While the ligand-binding surface of apo-PD-1 is relatively flat, it harbors a striking pocket in the murine PD-1/PD-L2 structure. An analogous pocket in human PD-1 may serve as a small-molecule drug target, but the structure of the human complex is unknown. Because the CC′ and FG loops in murine PD-1 adopt new conformations upon binding PD-L2, we hypothesized that mutations in these two loops could be coupled to pocket formation and alter PD-1’s affinity for PD-L2. Here, we conducted deep mutational scanning in these loops and used yeast surface display to select for enhanced PD-L2 binding. A PD-1 variant with three substitutions binds PD-L2 with an affinity two orders of magnitude higher than that of the wild-type protein, permitting crystallization of the complex. We determined the X-ray crystal structures of the human triple-mutant PD-1/PD-L2 complex and the apo triple-mutant PD-1 variant at 2.0 Å and 1.2 Å resolution, respectively. Binding of PD-L2 is accompanied by formation of a prominent pocket in human PD-1, as well as substantial conformational changes in the CC′ and FG loops. The structure of the apo triple-mutant PD-1 shows that the CC′ loop adopts the ligand-bound conformation, providing support for allostery between the loop and pocket. This human PD-1/PD-L2 structure provide critical insights for the design and discovery of small-molecule PD-1 inhibitors.
  • 关键词:PD-1 ; PD-L2 ; immune checkpoint ; drug discovery
国家哲学社会科学文献中心版权所有