首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude
  • 本地全文:下载
  • 作者:Tom D. Brutsaert ; Melisa Kiyamu ; Gianpietro Elias Revollendo
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:48
  • 页码:24006-24011
  • DOI:10.1073/pnas.1906171116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Highland native Andeans have resided at altitude for millennia. They display high aerobic capacity (VO 2 max) at altitude, which may be a reflection of genetic adaptation to hypoxia. Previous genomewide (GW) scans for natural selection have nominated Egl-9 homolog 1 gene ( EGLN1 ) as a candidate gene. The encoded protein, EGLN1/PHD2, is an O 2 sensor that controls levels of the Hypoxia Inducible Factor-α (HIF-α), which regulates the cellular response to hypoxia. From GW association and analysis of covariance performed on a total sample of 429 Peruvian Quechua and 94 US lowland referents, we identified 5 EGLN1 SNPs associated with higher VO 2 max (L⋅min −1 and mL⋅min −1 ⋅kg −1 ) in hypoxia (rs1769793, rs2064766, rs2437150, rs2491403, rs479200). For 4 of these SNPs, Quechua had the highest frequency of the advantageous (high VO 2 max) allele compared with 25 diverse lowland comparison populations from the 1000 Genomes Project. Genotype effects were substantial, with high versus low VO 2 max genotype categories differing by ∼11% (e.g., for rs1769793 SNP genotype TT = 34.2 mL⋅min −1 ⋅kg −1 vs. CC = 30.5 mL⋅min −1 ⋅kg −1 ). To guard against spurious association, we controlled for population stratification. Findings were replicated for EGLN1 SNP rs1769793 in an independent Andean sample collected in 2002. These findings contextualize previous reports of natural selection at EGLN1 in Andeans, and support the hypothesis that natural selection has increased the frequency of an EGLN1 causal variant that enhances O 2 delivery or use during exercise at altitude in Peruvian Quechua..
  • 关键词:hypoxia ; selection ; Peruvian Quechua ; evolution ; aerobic capacity
国家哲学社会科学文献中心版权所有