首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The effect of artificial support material existence on removal of organic and nutrient in laboratory scale using plug flow reactor (PFR)
  • 本地全文:下载
  • 作者:Sarah Aphirta ; Prayatni Soewondo ; Nida Maisa Zakiyya
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:148
  • 页码:1-7
  • DOI:10.1051/e3sconf/202014801003
  • 出版社:EDP Sciences
  • 摘要:Artificial support material was examined to determine the removal capacity of organic pollutants and nutrients on laboratory scale using PFR system. The experiment was performed using artificial water with similar characteristics to Cikapayang River in three PFRs of 10.78 L. The PFRs were made of PVC pipes filled with an inert chemical substrate as an artificial support material. The process of pollutants removal in the PFR relies on a biological layer (biofilm) grown on the surface of the material support. Three type of C:N:P ratio used in this study were 30:15:1, 75:25:2, and 180:35:3. The results showed that the maximum removal efficiency of TSS, TN, TP, and COD in the preliminary tests were 85%, 87%, 71% and 79%, respectively. Moreover, the maximum water absorption capacity result was up to 30.8%. Organic substrate removal rate compared with first order and Strover-Kincannon substrate removal models prediction. The best fit model for this experiment was Stover-Kincannon model, with the average correlation coefficient up to 90% for all of the three reactors. SEM analysis shown that the microorganisms shape is coccus with the average size of 5 µm.
  • 其他摘要:Artificial support material was examined to determine the removal capacity of organic pollutants and nutrients on laboratory scale using PFR system. The experiment was performed using artificial water with similar characteristics to Cikapayang River in three PFRs of 10.78 L. The PFRs were made of PVC pipes filled with an inert chemical substrate as an artificial support material. The process of pollutants removal in the PFR relies on a biological layer (biofilm) grown on the surface of the material support. Three type of C:N:P ratio used in this study were 30:15:1, 75:25:2, and 180:35:3. The results showed that the maximum removal efficiency of TSS, TN, TP, and COD in the preliminary tests were 85%, 87%, 71% and 79%, respectively. Moreover, the maximum water absorption capacity result was up to 30.8%. Organic substrate removal rate compared with first order and Strover-Kincannon substrate removal models prediction. The best fit model for this experiment was Stover-Kincannon model, with the average correlation coefficient up to 90% for all of the three reactors. SEM analysis shown that the microorganisms shape is coccus with the average size of 5 µm.
国家哲学社会科学文献中心版权所有