摘要:Chlorophyll-a (Chl-a) accurate inversion in inland water is important for water environmental protection. In this study, we tested the Genetic Algorithm optimized Back Propagation (GA-BP) neural network model to precisely simulated the Chl-a in an inland lake using Landsat 8 OLI images. The result show that the R2 of GA-BP neural network model has increased 28.17% compared to traditional BP neural network model. Then this GA-BP model was applied to another two scenes of Landsat 8 OLI image with the R2 of 0.961, 0.954 respectively for March 26 2018, October 26 2018. And the spatial distribution have shown a reasonable result of Chl-a variation in Lake Donghu. This study can provide a new method for Chla concentration inversion in urban lakes and support water environment protection on a large scale.
其他摘要:Chlorophyll-a (Chl-a) accurate inversion in inland water is important for water environmental protection. In this study, we tested the Genetic Algorithm optimized Back Propagation (GA-BP) neural network model to precisely simulated the Chl-a in an inland lake using Landsat 8 OLI images. The result show that the R2 of GA-BP neural network model has increased 28.17% compared to traditional BP neural network model. Then this GA-BP model was applied to another two scenes of Landsat 8 OLI image with the R 2 of 0.961, 0.954 respectively for March 26 2018, October 26 2018. And the spatial distribution have shown a reasonable result of Chl-a variation in Lake Donghu. This study can provide a new method for Chla concentration inversion in urban lakes and support water environment protection on a large scale.