首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Remote sensing inversion of lake water quality parameters based on ensemble modelling
  • 本地全文:下载
  • 作者:Li Xiaojuan ; Huang Mutao ; Li Jianbao
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:143
  • 页码:1-6
  • DOI:10.1051/e3sconf/202014302007
  • 出版社:EDP Sciences
  • 摘要:In this paper, combined with water quality sampling data and Landsat8 satellite remote sensing image data, the inversion model of Chl-a and TN water quality parameter concentration was constructed based on machine learning algorithm. After the verification and evaluation of the inversion results of the test samples, Chl-a TN inversion model with high correlation between model test results and measured data was selected to participate in remote sensing inversion ensemble modelling of water quality parameters. Then, the ensemble remote sensing inversion model of water quality parameters was established based on entropy weight method and error analysis. By applying the idea of ensemble modelling to remote sensing inversion of water quality parameters, the advantages of different models can be integrated and the precision of water quality parameters inversion can be improved. Through the evaluation and comparative analysis of the model results, the entropy weight method can improve the inversion accuracy to some extent, but the improvement space is limited. In the verification of the two methods of ensemble modelling based on error analysis, compared with the optimal results of a single model, the determination coefficient (R2) of Chlorophyll a and TN concentration inversion results was increased from 0.9288 to 0.9313 and from 0.8339 to 0.8838, and the root mean square error was decreased from 14.2615 μ/L to 10.4194 μ/L and from1.1002mg/L to 0.8621mg/L. At the same time, with the increase of the number of models involved in the set modelling, the inversion accuracy is higher.
  • 其他摘要:In this paper, combined with water quality sampling data and Landsat8 satellite remote sensing image data, the inversion model of Chl-a and TN water quality parameter concentration was constructed based on machine learning algorithm. After the verification and evaluation of the inversion results of the test samples, Chl-a TN inversion model with high correlation between model test results and measured data was selected to participate in remote sensing inversion ensemble modelling of water quality parameters. Then, the ensemble remote sensing inversion model of water quality parameters was established based on entropy weight method and error analysis. By applying the idea of ensemble modelling to remote sensing inversion of water quality parameters, the advantages of different models can be integrated and the precision of water quality parameters inversion can be improved. Through the evaluation and comparative analysis of the model results, the entropy weight method can improve the inversion accuracy to some extent, but the improvement space is limited. In the verification of the two methods of ensemble modelling based on error analysis, compared with the optimal results of a single model, the determination coefficient (R2) of Chlorophyll a and TN concentration inversion results was increased from 0.9288 to 0.9313 and from 0.8339 to 0.8838, and the root mean square error was decreased from 14.2615 μ/L to 10.4194 μ/L and from1.1002mg/L to 0.8621mg/L. At the same time, with the increase of the number of models involved in the set modelling, the inversion accuracy is higher.
国家哲学社会科学文献中心版权所有