首页    期刊浏览 2025年06月30日 星期一
登录注册

文章基本信息

  • 标题:Electrochemical Oxygen Reduction Reaction Performance of Water Hyacinth Derived Porous Non-precious Electrocatalyst in Alkaline Media
  • 本地全文:下载
  • 作者:Kriangsak Ketpang ; Jenkamol Prathum ; Punnarut Juprasat
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:141
  • 页码:1-5
  • DOI:10.1051/e3sconf/202014101004
  • 出版社:EDP Sciences
  • 摘要:This research studied the possibility of converting water hyacinth biomass into the porous non-precious oxygen reduction reaction (ORR) electrocatalyst using a simple, low cost and scalable autogenic pressure method. The electrocatalyst was prepared by thermally annealing water hyacinth root contained ZnCl2 at 700oC under autogenic pressure conditions. The phase of the catalyst was the mixture of carbon and metal oxide. In addition, rough surface morphology and high porosity were clearly observed using scanning electron microscope. The synthesized catalyst was then determined the ORR performance by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques under O2 saturated KOH solution. The ORR performance increased as the catalyst loading was increased and the optimum catalyst loading was found to be 1.5 mg/cm2 which generated the Eonset and E1/2 value of 0.93 V and 0.80 V vs. RHE, respectively. Furthermore, the E1/2 value of the synthesized catalyst was 230 and 130 mV greater than the catalyst synthesized without ZnCl2 and commercial carbon (VXC-72R). ORR durability study suggested that the prepared catalyst was durable to operate ORR for 5000 cycles in alkaline media. These results suggested that the autogenic pressure conditions would be a promising technique to prepare highly active and durable biomass derived ORR electrocatalyst.
  • 其他摘要:This research studied the possibility of converting water hyacinth biomass into the porous non-precious oxygen reduction reaction (ORR) electrocatalyst using a simple, low cost and scalable autogenic pressure method. The electrocatalyst was prepared by thermally annealing water hyacinth root contained ZnCl2 at 700oC under autogenic pressure conditions. The phase of the catalyst was the mixture of carbon and metal oxide. In addition, rough surface morphology and high porosity were clearly observed using scanning electron microscope. The synthesized catalyst was then determined the ORR performance by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques under O2 saturated KOH solution. The ORR performance increased as the catalyst loading was increased and the optimum catalyst loading was found to be 1.5 mg/cm2 which generated the Eonset and E1/2 value of 0.93 V and 0.80 V vs. RHE, respectively. Furthermore, the E1/2 value of the synthesized catalyst was 230 and 130 mV greater than the catalyst synthesized without ZnCl2 and commercial carbon (VXC-72R). ORR durability study suggested that the prepared catalyst was durable to operate ORR for 5000 cycles in alkaline media. These results suggested that the autogenic pressure conditions would be a promising technique to prepare highly active and durable biomass derived ORR electrocatalyst.
国家哲学社会科学文献中心版权所有