首页    期刊浏览 2025年04月30日 星期三
登录注册

文章基本信息

  • 标题:Microwave-Assisted Pyrolysis of Fuel Oil for Hydrocarbons Upgrading
  • 本地全文:下载
  • 作者:Suksun Amornraksa ; Thanida Sritangthong
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:141
  • 页码:1-6
  • DOI:10.1051/e3sconf/202014101013
  • 出版社:EDP Sciences
  • 摘要:By-product upgrading is crucial in hydrocarbon processing industries as it can increase the competitiveness of the business. This research investigated opportunity to upgrade fuel oil by-product obtained from olefins production by using microwave pyrolysis. A lab-scale quartz reactor filled with placed inside a 1,200 watts household microwave oven was used for the experiments. Coconut-based activated carbon was used as a microwave receptor. Microwave powers were varied at 600 W, 840 W and 1,200 W to adjust cracking temperature between 800°C and 900°C. The effect of residence time was investigated by adjusting flow rate of N2 carrier gas. The chemical compositions and product yields were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). It was revealed that hydrogen, carbon monoxide, carbon dioxide and hydrocarbon gaseous product (alkanes, naphthenics and alkenes) were produced as the main products. For liquid products, the main compositions were cycloalkenes and polycyclic aromatic groups.
  • 其他摘要:By-product upgrading is crucial in hydrocarbon processing industries as it can increase the competitiveness of the business. This research investigated opportunity to upgrade fuel oil by-product obtained from olefins production by using microwave pyrolysis. A lab-scale quartz reactor filled with placed inside a 1,200 watts household microwave oven was used for the experiments. Coconut-based activated carbon was used as a microwave receptor. Microwave powers were varied at 600 W, 840 W and 1,200 W to adjust cracking temperature between 800°C and 900°C. The effect of residence time was investigated by adjusting flow rate of N2 carrier gas. The chemical compositions and product yields were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). It was revealed that hydrogen, carbon monoxide, carbon dioxide and hydrocarbon gaseous product (alkanes, naphthenics and alkenes) were produced as the main products. For liquid products, the main compositions were cycloalkenes and polycyclic aromatic groups.
国家哲学社会科学文献中心版权所有