首页    期刊浏览 2025年06月30日 星期一
登录注册

文章基本信息

  • 标题:Mathematical Modeling of Arc Faults in Networks with Low Single Phase-to-Ground Fault Currents
  • 本地全文:下载
  • 作者:Andrei Brilinskii ; Georgiy Evdokunin ; Anna Petrova
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:140
  • 页码:1-7
  • DOI:10.1051/e3sconf/201914005001
  • 出版社:EDP Sciences
  • 摘要:The article comprises the results of the research defining open-flame arcs self-quenching conditions in the event of a single phase-to-ground fault in overhead medium-voltage distribution networks according to existing theories of arc extinguishing. The calculations included metallic and arc faults modeling in a network with low phase-to-ground fault current. The arc gap simulation based on the mathematical channel model of a cylindrically symmetrical upright arc stabilized by rising convective gas flow was carried out in ATPDraw software program. The single phase-to-ground arc fault calculations results indicated an increase in high-frequency currents’ attenuation rate during transient processes as well as a reduce reduction in the electric arc lifetime from 8 ms to 2 ms in case of the breakdown voltage decrease from the peak value to zero. Notably, in case of low single phase-to-ground fault current the arc extinguishing took place at the first high-frequency current zero. For the cases of nonzero breakdown voltages, the electric arc extinguishing was detected at the fundamental frequency current component zero-crossing instant. The maximum overvoltage ratio of K = 2.8 was obtained as athe result of the single phase-to-ground fault at the peak phase voltage.
  • 其他摘要:The article comprises the results of the research defining open-flame arcs self-quenching conditions in the event of a single phase-to-ground fault in overhead medium-voltage distribution networks according to existing theories of arc extinguishing. The calculations included metallic and arc faults modeling in a network with low phase-to-ground fault current. The arc gap simulation based on the mathematical channel model of a cylindrically symmetrical upright arc stabilized by rising convective gas flow was carried out in ATPDraw software program. The single phase-to-ground arc fault calculations results indicated an increase in high-frequency currents’ attenuation rate during transient processes as well as a reduce reduction in the electric arc lifetime from 8 ms to 2 ms in case of the breakdown voltage decrease from the peak value to zero. Notably, in case of low single phase-to-ground fault current the arc extinguishing took place at the first high-frequency current zero. For the cases of nonzero breakdown voltages, the electric arc extinguishing was detected at the fundamental frequency current component zero-crossing instant. The maximum overvoltage ratio of K = 2.8 was obtained as athe result of the single phase-to-ground fault at the peak phase voltage.
国家哲学社会科学文献中心版权所有