首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Numerical characteristics of a centrifugal compressor with a low flow coefficient
  • 本地全文:下载
  • 作者:Aleksey Yablokov ; Ivan Yanin ; Nikolay Sadovskyi
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:140
  • 页码:1-6
  • DOI:10.1051/e3sconf/201914006010
  • 出版社:EDP Sciences
  • 摘要:The study presents the simulation results of the viscid gas flow in low flow coefficient centrifugal compressor stages. The problem is solved in a stationary formulation using the Ansys CFX software package. The numerical simulation is carried out on three ultrahigh-pressure model stages; two stages have blades of the classical type impeller and one stage is of the bodily type. The value of the conditional flow coefficient is 0.0063 to 0.015. As part of the study, block-structured design meshes are used for all gas channel elements, with their total number being equaled as 13–15 million. During the calculations a numerical characteristic was validated with the results of tests carried out at the Department of Compressor, Vacuum and Refrigeration Engineering of Peter the Great St. Petersburg Polytechnic University. With an increase of inlet pressure as a result of a numerical study, it was found that for a given mathematical model the disk friction and leakage coefficient (1 + βfr + βlk) is overestimated. The analysis of flow in labyrinth seals has shown an increase of total temperature near the discs by 30–50 °С, nevertheless this fact did not influence gas parameters in the behind-the-rotor section. The calculation data obtained with finer design mesh (the first near-wall cell was 0.001 mm) is identical to those obtained with the first near-wall cell 0.01 mm mesh.
  • 其他摘要:The study presents the simulation results of the viscid gas flow in low flow coefficient centrifugal compressor stages. The problem is solved in a stationary formulation using the Ansys CFX software package. The numerical simulation is carried out on three ultrahigh-pressure model stages; two stages have blades of the classical type impeller and one stage is of the bodily type. The value of the conditional flow coefficient is 0.0063 to 0.015. As part of the study, block-structured design meshes are used for all gas channel elements, with their total number being equaled as 13–15 million. During the calculations a numerical characteristic was validated with the results of tests carried out at the Department of Compressor, Vacuum and Refrigeration Engineering of Peter the Great St. Petersburg Polytechnic University. With an increase of inlet pressure as a result of a numerical study, it was found that for a given mathematical model the disk friction and leakage coefficient (1 + βfr + βlk) is overestimated. The analysis of flow in labyrinth seals has shown an increase of total temperature near the discs by 30–50 °С, nevertheless this fact did not influence gas parameters in the behind-the-rotor section. The calculation data obtained with finer design mesh (the first near-wall cell was 0.001 mm) is identical to those obtained with the first near-wall cell 0.01 mm mesh.
国家哲学社会科学文献中心版权所有