摘要:Primary element of an oxy-combustion plants is ambient air separation unit. This paper presents the results of experimental research concerning the parameters of the separation of N2/O2 from ambient air, using capillary polymer membranes, potentially applicable in oxy-combustion technology, under variable operational conditions. Collected data were utilized to approximate continuous functions describing the variability of essential parameters of the air separation based on such membranes. The functions were introduced to develop a complete mathematical model of the separation unit, intended to be applied in oxy-Moderate or Intense Low Oxygen Dilution (oxy-MILD) zero-emission plants. Computational analyses were performed for three variants of the unit’s configuration: serial connection of membrane modules, unit with retentate recirculation and unit with permeate recirculation. The results of the research, in the form of sets of characteristic curves, depicting parameters of the separation process as a function of the variable operational conditions, show that crucial differences to the subsequent separation parameters (permeate purity, real selectivity coefficient, recovery coefficient) and with regard to the power consumed, were obtained. The highest parameters of the module were gained for serial connection, whereas the lowest – for permeate recirculation. The lowest energy consumption was acquired for the retentate recirculation variant.
其他摘要:Primary element of an oxy-combustion plants is ambient air separation unit. This paper presents the results of experimental research concerning the parameters of the separation of N2/O2 from ambient air, using capillary polymer membranes, potentially applicable in oxy-combustion technology, under variable operational conditions. Collected data were utilized to approximate continuous functions describing the variability of essential parameters of the air separation based on such membranes. The functions were introduced to develop a complete mathematical model of the separation unit, intended to be applied in oxy-Moderate or Intense Low Oxygen Dilution (oxy-MILD) zero-emission plants. Computational analyses were performed for three variants of the unit’s configuration: serial connection of membrane modules, unit with retentate recirculation and unit with permeate recirculation. The results of the research, in the form of sets of characteristic curves, depicting parameters of the separation process as a function of the variable operational conditions, show that crucial differences to the subsequent separation parameters (permeate purity, real selectivity coefficient, recovery coefficient) and with regard to the power consumed, were obtained. The highest parameters of the module were gained for serial connection, whereas the lowest – for permeate recirculation. The lowest energy consumption was acquired for the retentate recirculation variant.