期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2020
卷号:17
期号:1
页码:1-10
DOI:10.1177/1729881419896660
出版社:SAGE Publications
摘要:Recently, most of the existing mobile robot indoor positioning systems (IPSs) use infrared sensors, cameras, and other extra infrastructures. They usually suffer from high cost and special hardware implementation. In order to address the above problems, this article proposes a Wi-Fi-based indoor mobile robot positioning system and designs and develops a robot positioning platform based on the commercial Wi-Fi devices, such as Wi-Fi routers. Furthermore, a robust principal component analysis-based extreme learning machine algorithm is proposed to address the issue of noisy measurements in IPSs. Real-world robot indoor positioning experiments are extensively carried out and the results verify the effectiveness and superiority of the proposed system.
关键词:Indoor positioning system; mobile robot; robust principal component analysis; extreme learning machine
其他关键词:Indoor positioning system ; mobile robot ; robust principal component analysis ; extreme learning machine