首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Precise timing is ubiquitous, consistent, and coordinated across a comprehensive, spike-resolved flight motor program
  • 本地全文:下载
  • 作者:Joy Putney ; Rachel Conn ; Simon Sponberg
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:52
  • 页码:26951-26960
  • DOI:10.1073/pnas.1907513116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Sequences of action potentials, or spikes, carry information in the number of spikes and their timing. Spike timing codes are critical in many sensory systems, but there is now growing evidence that millisecond-scale changes in timing also carry information in motor brain regions, descending decision-making circuits, and individual motor units. Across all of the many signals that control a behavior, how ubiquitous, consistent, and coordinated are spike timing codes? Assessing these open questions ideally involves recording across the whole motor program with spike-level resolution. To do this, we took advantage of the relatively few motor units controlling the wings of a hawk moth, Manduca sexta . We simultaneously recorded nearly every action potential from all major wing muscles and the resulting forces in tethered flight. We found that timing encodes more information about turning behavior than spike count in every motor unit, even though there is sufficient variation in count alone. Flight muscles vary broadly in function as well as in the number and timing of spikes. Nonetheless, each muscle with multiple spikes consistently blends spike timing and count information in a 3:1 ratio. Coding strategies are consistent. Finally, we assess the coordination of muscles using pairwise redundancy measured through interaction information. Surprisingly, not only are all muscle pairs coordinated, but all coordination is accomplished almost exclusively through spike timing, not spike count. Spike timing codes are ubiquitous, consistent, and essential for coordination.
  • 关键词:motor control ; flight ; information theory ; spike timing ; temporal code
国家哲学社会科学文献中心版权所有