首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Mitochondrial dysfunctions trigger the calcium signaling-dependent fungal multidrug resistance
  • 本地全文:下载
  • 作者:Yeqi Li ; Yuanwei Zhang ; Chi Zhang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:3
  • 页码:1711-1721
  • DOI:10.1073/pnas.1911560116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Drug resistance in fungal pathogens has risen steadily over the past decades due to long-term azole therapy or triazole usage in agriculture. Modification of the drug target protein to prevent drug binding is a major recognized route to induce drug resistance. However, mechanisms for nondrug target-induced resistance remain only loosely defined. Here, we explore the molecular mechanisms of multidrug resistance resulted from an efficient adaptation strategy for survival in drug environments in the human pathogen Aspergillus fumigatus . We show that mutants conferring multidrug resistance are linked with mitochondrial dysfunction induced by defects in heme A biosynthesis. Comparison of the gene expression profiles between the drug-resistant mutants and the parental wild-type strain shows that multidrug-resistant transporters, chitin synthases, and calcium-signaling-related genes are significantly up-regulated, while scavenging mitochondrial reactive oxygen species (ROS)-related genes are significantly down-regulated. The up-regulated-expression genes share consensus calcium-dependent serine threonine phosphatase-dependent response elements (the binding sites of calcium-signaling transcription factor CrzA). Accordingly, drug-resistant mutants show enhanced cytosolic Ca 2+ transients and persistent nuclear localization of CrzA. In comparison, calcium chelators significantly restore drug susceptibility and increase azole efficacy either in laboratory-derived or in clinic-isolated A. fumigatus strains. Thus, the mitochondrial dysfunction as a fitness cost can trigger calcium signaling and, therefore, globally up-regulate a series of embedding calcineurin-dependent–response-element genes, leading to antifungal resistance. These findings illuminate how fitness cost affects drug resistance and suggest that disruption of calcium signaling might be a promising therapeutic strategy to fight against nondrug target-induced drug resistance.
  • 关键词:drug resistance ; fungi ; Aspergillus fumigatus ; calcium signaling ; mitochondrial dysfunctions
国家哲学社会科学文献中心版权所有