期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:1
页码:184-189
DOI:10.1073/pnas.1914295117
出版社:The National Academy of Sciences of the United States of America
摘要:The distribution and transportation of water in Earth’s interior depends on the stability of water-bearing phases. The transition zone in Earth’s mantle is generally accepted as an important potential water reservoir because its main constituents, wadsleyite and ringwoodite, can incorporate weight percent levels of H2 O in their structures at mantle temperatures. The extent to which water can be transported beyond the transition zone deeper into the mantle depends on the water carrying capacity of minerals stable in subducted lithosphere. Stishovite is one of the major mineral components in subducting oceanic crust, yet the capacity of stishovite to incorporate water beyond at lower mantle conditions remains speculative. In this study, we combine in situ laser heating with synchrotron X-ray diffraction to show that the unit cell volume of stishovite synthesized under hydrous conditions is ∼2.3 to 5.0% greater than that of anhydrous stishovite at pressures of ∼27 to 58 GPa and temperatures of 1,240 to 1,835 K. Our results indicate that stishovite, even at temperatures along a mantle geotherm, can potentially incorporate weight percent levels of H2 O in its crystal structure and has the potential to be a key phase for transporting and storing water in the lower mantle.
关键词:ultrahydrous stishovite ; water transporting ; deep mantle ; high pressure–temperature