首页    期刊浏览 2025年04月06日 星期日
登录注册

文章基本信息

  • 标题:Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function
  • 本地全文:下载
  • 作者:Xiaoyan Liu ; Weidi Xiao ; Yanan Zhang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:1
  • 页码:328-336
  • DOI:10.1073/pnas.1912531117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The fundamental importance of the 26S proteasome in health and disease suggests that its function must be finely controlled, and yet our knowledge about proteasome regulation remains limited. Posttranslational modifications, especially phosphorylation, of proteasome subunits have been shown to impact proteasome function through different mechanisms, although the vast majority of proteasome phosphorylation events have not been studied. Here, we have characterized 1 of the most frequently detected proteasome phosphosites, namely Ser361 of Rpn1, a base subunit of the 19S regulatory particle. Using a variety of approaches including CRISPR/Cas9-mediated gene editing and quantitative mass spectrometry, we found that loss of Rpn1-S361 phosphorylation reduces proteasome activity, impairs cell proliferation, and causes oxidative stress as well as mitochondrial dysfunction. A screen of the human kinome identified several kinases including PIM1/2/3 that catalyze S361 phosphorylation, while its level is reversibly controlled by the proteasome-resident phosphatase, UBLCP1. Mechanistically, Rpn1-S361 phosphorylation is required for proper assembly of the 26S proteasome, and we have utilized a genetic code expansion system to directly demonstrate that S361-phosphorylated Rpn1 more readily forms a precursor complex with Rpt2, 1 of the first steps of 19S base assembly. These findings have revealed a prevalent and biologically important mechanism governing proteasome formation and function.
  • 关键词:proteasome ; phosphorylation ; UBLCP1 ; PIM ; genetic code expansion
国家哲学社会科学文献中心版权所有