首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Reverse Derivative Categories
  • 本地全文:下载
  • 作者:Robin Cockett ; Geoffrey Cruttwell ; Jonathan Gallagher
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:152
  • 页码:1-16
  • DOI:10.4230/LIPIcs.CSL.2020.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The reverse derivative is a fundamental operation in machine learning and automatic differentiation [Martín Abadi et al., 2015; Griewank, 2012]. This paper gives a direct axiomatization of a category with a reverse derivative operation, in a similar style to that given by [Blute et al., 2009] for a forward derivative. Intriguingly, a category with a reverse derivative also has a forward derivative, but the converse is not true. In fact, we show explicitly what a forward derivative is missing: a reverse derivative is equivalent to a forward derivative with a dagger structure on its subcategory of linear maps. Furthermore, we show that these linear maps form an additively enriched category with dagger biproducts.
  • 关键词:Reverse Derivatives; Cartesian Reverse Differential Categories; Categorical Semantics; Cartesian Differential Categories; Dagger Categories; Automati
国家哲学社会科学文献中心版权所有