首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:High-Dimensional Expanders from Expanders
  • 本地全文:下载
  • 作者:Siqi Liu ; Sidhanth Mohanty ; Elizabeth Yang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:151
  • 页码:1-32
  • DOI:10.4230/LIPIcs.ITCS.2020.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new constructions, as well as a natural probabilistic model to sample constant degree high-dimensional expanders. In particular, we show that given an expander graph G, adding self loops to G and taking the tensor product of the modified graph with a high-dimensional expander produces a new high-dimensional expander. Our proof of rapid mixing of high order random walks is based on the decomposable Markov chains framework introduced by [Jerrum et al., 2004].
  • 关键词:High-Dimensional Expanders; Markov Chains
国家哲学社会科学文献中心版权所有