首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Lower Bounds for (Non-Monotone) Comparator Circuits
  • 本地全文:下载
  • 作者:Anna G{'a}l ; Robert Robere
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:151
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ITCS.2020.58
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Comparator circuits are a natural circuit model for studying the concept of bounded fan-out computations, which intuitively corresponds to whether or not a computational model can make "copies" of intermediate computational steps. Comparator circuits are believed to be weaker than general Boolean circuits, but they can simulate Branching Programs and Boolean formulas. In this paper we prove the first superlinear lower bounds in the general (non-monotone) version of this model for an explicitly defined function. More precisely, we prove that the n-bit Element Distinctness function requires Ω((n/ log n)^(3/2)) size comparator circuits.
  • 关键词:comparator circuits; circuit complexity; Nechiporuk; lower bounds
国家哲学社会科学文献中心版权所有