首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:New Query Lower Bounds for Submodular Function Minimization
  • 本地全文:下载
  • 作者:Andrei Graur ; Tristan Pollner ; Vidhya Ramaswamy
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:151
  • 页码:1-16
  • DOI:10.4230/LIPIcs.ITCS.2020.64
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider submodular function minimization in the oracle model: given black-box access to a submodular set function f:2^[n] â†' â", find an element of arg min_S {f(S)} using as few queries to f(â<.) as possible. State-of-the-art algorithms succeed with Ã.(n²) queries [Yin Tat Lee et al., 2015], yet the best-known lower bound has never been improved beyond n [Nicholas J. A. Harvey, 2008]. We provide a query lower bound of 2n for submodular function minimization, a 3n/2-2 query lower bound for the non-trivial minimizer of a symmetric submodular function, and a binom{n}{2} query lower bound for the non-trivial minimizer of an asymmetric submodular function. Our 3n/2-2 lower bound results from a connection between SFM lower bounds and a novel concept we term the cut dimension of a graph. Interestingly, this yields a 3n/2-2 cut-query lower bound for finding the global mincut in an undirected, weighted graph, but we also prove it cannot yield a lower bound better than n+1 for s-t mincut, even in a directed, weighted graph.
  • 关键词:submodular functions; query lower bounds; min cut
国家哲学社会科学文献中心版权所有