We propose and analyze a spectral Jacobi-collocation approximation for fractional order integrodifferential equations of Volterra type with pantograph delay. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collocation method, which shows that the error of approximate solution decays exponentially in L ∞ norm and weighted L 2 -norm. The numerical examples are given to illustrate the theoretical results.